GEAUTOMATISEERDE BOUWPRODUCTIESYSTEMEN

Intelligent bouwmanagement door toepassen van informatie en communicatietechnologieën

- Betere arbeidsomstandigheden
- Weersonafhankelijk bouwen en veilig bouwen op grote hoogte
- Vermindering van arbeidsuren en arbeidsbelasting
- Verkorten van de productietijd door modularisatie en prefabricage
- Vereenvoudiging van het productieproces

Schone en veilige bouwplaats

Factory

Material Carry-in Data

Actual Management List

Stacked Material List

Eisenboottoren (Skyscraper Tower)

Transfer Line

Ground Factory

3D Building Model Data

Material Management Database

Material Plan S.S.

Building Site Management S.S.
tiesystemen in Japan

DE ROMINSE BOUWMEESTER EN INGENIEUR VITRUVIUS ONTWIKKELT NIET ALLEEN TEMPELS, MAAR OOK MOEIE ZELFOPRIJZENDE HUISMACHINES OM BOUWDELEN OP HUN PLEK TE ZETTEN. HET GEINTEGREERD ONTWERPEN EN UITVOEREN VAN EEN GEBOUW IS DUS NIET IETS NIEUWS. DE SCHAL WAARIN DIT GEBEURT WEL. HET ZIJN JAPANSE BOUWONDERNEMINGEN, DIE HERIN DE AFGELOPEN TWINTIG JAAR HET VOORTOUW HEBBEN GENOMEN, DOOR ONTWIKKELING EN TOEPASSING VAN GEAUTOMATISEERDE BOUWPRODUCTIESYSTEMEN.

Professor Shigeyuki Ookayashi van de Science University of Tokyo noemt drie redenen waarom Japanse bouwondernemingen hun bouwproductie automatiseren en robotiseren: vergrijzing van arbeidskrachten, hogere opleidingsniveau van medewerkers en de lage toegang van jonge mensen in de bouw. Dat de ontwikkeling van geautomatiseerde bouwproductiesystemen in Japan voorspoedig verloopt, heeft volgens de Roodbeh Kangari van het Georgia Institute of Technology te maken met het gunstige researchklimaat. Drie factoren spelen hier een rol: a) dus Kangari: grote Japanse bouwondernemingen hebben uitstekende faciliteiten om informatie te verzamelen, ze hebben geïnvesteerd in research-consorcia, joint ventures en partnerships, en hun afnemers ondersteunen innovatieve technologieën.

Nederlands bouwproductiesysteem

Niet alleen in Japan, maar ook elders wordt gewerkt met bouwproductiesystemen. Een bekend voorbeeld van eigen bodem dateert uit 1991. Bij de bouw van het 150 meter hoge kantoorgebouw van de Nationale Nederlanden in Rotterdam is gebruik gemaakt van een gemanageerde bouwproductiesysteem voor

De definitie

Een bouwproductiesysteem is een technische installatie, die bouwdeelen assembleert tot een gebouw. Een installatie in deze beteekenis kan worden opgevat als een verzameling van mogelijk samenwerkende mensen, werktuigen, computers en telecommunicatiemiddelen. Wanneer we deze definitie koppelen aan de verschillende taken in de uitvoering van een bouwactiviteit - fysieke taken en denktaken - levert dat een onderverdeling op van productiesystemen in traditionele, gemanageerde, gemanechtronicerde en gemanageerde bouwproductiesystemen. De onderlinge relaties van de verschillende parameters zijn weergegeven in onderstaand schema.

<table>
<thead>
<tr>
<th>Type productiesysteem</th>
<th>Fysieke taken</th>
<th>Denktaken in uitvoering</th>
<th>Denktaken in organisatie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traditioneel</td>
<td>Mensen, Werknemen</td>
<td>Mensen</td>
<td>Mensen</td>
</tr>
<tr>
<td>Gemechaniseerd</td>
<td>Werknemen</td>
<td>Mensen</td>
<td>Mensen</td>
</tr>
</tbody>
</table>

De bijstand van het gemanageerde bouwproductiesysteem van Nationale Nederlanden in Rotterdam betonnen vloeren en wanden kunnen bij slecht weer gelegd en geplaatst worden.

Auteur

Ir Frans van Gastel,
Technische Universiteit Eindhoven
<table>
<thead>
<tr>
<th>Systeemnaam</th>
<th>Gebouwgegevens</th>
<th>Systeemgegevens</th>
<th>Tijden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Push Up</td>
<td>Gebouwd op 973 m²</td>
<td>Push-up installatie (120 ton)</td>
<td>Opgemaakt 1 maand, bouw 3 maanden, afbouwen 1 maand</td>
</tr>
<tr>
<td>Takamatsu Nagoya</td>
<td>Vloeroppervlak 11.189 m²</td>
<td>Hijskraan op hoed, hoge spijkers, steel draagconstructie</td>
<td></td>
</tr>
<tr>
<td>SMART</td>
<td>Gebouwd op 1.348 m²</td>
<td>Horizontale en verticale transport systeem</td>
<td>Gebouwd 1,5 maand, bouw 10 maanden, afbouwen 9,5 maanden</td>
</tr>
<tr>
<td>Shimizu Nagoya</td>
<td>Vloeroppervlak 20.657 m²</td>
<td>Assemblage in hoed, betonlegger, robots, steel draagconstructie</td>
<td></td>
</tr>
<tr>
<td>TIP</td>
<td>Gebouwd op 6178 m²</td>
<td>Bouwkundige kere nacht, hoed klimmen, gebed, hijskraan</td>
<td>Bouw 23 maanden</td>
</tr>
<tr>
<td>Taise Yokohama</td>
<td>Vloeroppervlak 110.318 m²</td>
<td>Hoge spijkers, steel draagconstructie</td>
<td></td>
</tr>
<tr>
<td>ARCS Obayashi Tokyo</td>
<td>Vloeroppervlak 10.190 m²</td>
<td>Assemblage hoed op begane grond, automatisch updown systeem, automatisch materiaal leveringsysteem</td>
<td>Bouw 22 maanden</td>
</tr>
<tr>
<td>MCCS</td>
<td>Gebouwd op 613 m²</td>
<td>Assemblage hoed op begane grond, steel draagconstructie, robots, steel draagconstructie, automatisch transport systeem in hoed</td>
<td>Bouw 20 maanden</td>
</tr>
<tr>
<td>Maeda Tokyo</td>
<td>Vloeroppervlak 6.614 m²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akatsuki 21 Fujiya Nagoya</td>
<td>Gebouwd op 1.168 m²</td>
<td>Assemblage hoed in hoed, hijskraan systeem, hoge spijkers, steel draagconstructie, kraan op dak, bouwbekleding fabriek</td>
<td>Bouw 27 maanden</td>
</tr>
<tr>
<td>AMURAD Kajima Nagoya</td>
<td>Gebouwd op 44.34 m²</td>
<td>Assemblage hoed op begane grond, steel draagconstructie, robots, steel draagconstructie, automatisch transport systeem in hoed</td>
<td>Bouw 11 maanden</td>
</tr>
<tr>
<td>LIFUP System</td>
<td>Gebouwd op 2.280 m²</td>
<td>Uit-up frame, hijskraan, assemblage van steel draagconstructie en installaties, bouwverdieping</td>
<td>Gebouwd 22 dagen, bouw 4 maanden, afbouwen 13 dagen</td>
</tr>
<tr>
<td>Big Canopy</td>
<td>Vloeroppervlak 42.652 m²</td>
<td>Vier masten op hoed, vijf verdiepingen per keer, geschikt voor prefabricaties bouwbedrijven</td>
<td>Bouw 22 maanden</td>
</tr>
</tbody>
</table>
het verticaal transporteren en assembleren van de vloer- en gevelelementen. Dit bouwproductie systeem bestond uit twee zelfklimmende hijskraan met bovenloopkranen. Tot windkracht negen kon met dit systeem nog worden gewerkt. Er is een inzet van hijskraan gekozen omdat men geen vertrouwen had in het functioneren van de torenkranen. Het op de hoogste plaatsen van vijftien ton zware bouwstenen zou problematisch zijn. Ook de invloed van de wind op de bouwstenen was een onzekerere factor. Door toepassing van de hijskraan is de bouwdag van 32 maanden gehaald, met de kosten van een traditionele kraaninzet.

Systeemopbouw

In het Nederlands bouwproductie systeem, zoals gebrukt bij de nieuw bouw van Nationale Nederlanden in Rotterdam, vinden we elementen van Japanse systemen. Deze systemen bestaan grofweg uit vier onderdelen. Een assemblage ruimte, waarin veersonafhankelijk gebouwd kan worden, een automatisch vijzel systeem, een automatisched transporthesysteem en een gecentraliseerd informatiesysteem. Hiernewitten op jacht worden onderscheiden, één met assemblage ruimte op het gebouw en een met assemblage ruimte op of onder de begane grond. Gebaseerd op deze twee typen zijn momenteel in Japan ongeveer tien geautomatiseerde productie systemen in gebruik. In de tabel op pagina 40 worden ze met een aantal kenmerken beschreven.

ABCS

De Japanse bouwonderneming Obayashi bouwde in 1999 aan de zuidzijde van Tokio in Mokuigawara een kantoorgebouw voor de computerknap NEC met het systeem ABCS. Op het tijdig diamant dak staan giekkraan en onder het dak bevinden zich bovenloopkranen die buiten het gebouw bouwwinden kunnen zijn. De constructie biedt de mogelijkheid de gevelpanelen te monteren vanuit de hoed. De hoed is afgeschermd, zodat het dak weer kan worden doorgebouwd.

Big Canopy

Obayashi bouwde een kantoorgebouw in Singapore met behulp van het bouwproductie systeem Big Canopy. Het tijdig diamant dak steunt op vier masten die ook bij torenkranen worden toegepast. Het dak schuift hierlangs omhoog, waarbij nieuwe stukken masten worden geplaatst. Op het dak staat een giekkraan en onder het dak bevinden zich bovenloopkranen. Door een slim
mechanisme van kraanbaarwiels voor loopkanten kunnen hipkuren gelijktijdig worden uitgevoerd. Aan de zijkant bevindt zich ook een zeer snelle lift die goederen op elke verdieping kan afleveren. De goederenstroom wordt beheerst door een 'material management software programma', waarbij gebruikt wordt gemaakt van barcodes op de bouwstenen.

AMURAD
Het bouwconstructiesysteem AMURAD (AutoMatic Up Rising construction by Advanced technique) is gebaseerd op Jackblok, een systeem dat het gebouw voor zich uit, omhoog, vijzt. Op de eerste vier verdiepingen vindt de assemblage van bouwstenen plaats; op de eerste twee verdiepingen de draagconstructie, op de derde verdieping de wanden en op de vierde verdieping installaties en afbouw. Het systeem levert vooral voordeel op waar de ruimte rond het gebouw weinig mogelijkheden biedt om bouwstenen aan te voeren, en omdat het horizontaal te transporteren en te monteren. De meeste economische hoogte voor dit systeem is 12 – 15 verdiepingen.

Prestaties
Wat zijn de prestaties van deze systemen? Shimizu heeft de praktijk van het SMART bouwproductiesysteem gemonitord. SMART, het eerste geautomatiseerde bouwproductiesysteem in Japan, uit 1991, leverde de volgende prestaties:
- Tijdens de bouw zou 20 procent van de productietijd onwettig zijn geweest vanwege wind- en regenverlies als er geen overkapping was geweest waarin men waarschijnlijk had kunnen bouwen.
- Voor taken die door het SMART bouwproductiesysteem werden uitgevoerd heeft men 50 procent op arbeid verdiend, op het hele project bedroeg dit percentage 30 procent.
- Tijdens het productiesproces werd de assemblage van een verdiepingsvloer teruggebracht van negen naar vijf dagen. Deze verbetering werd niet alleen bereikt door het repetitie-effect, maar ook door de verbetering van technieken en verrijkingen in software.
- De hoeveelheid bouwafval werd met 70 procent verminderd.

Boven
Doe naderde van het Big Canopy geautomatiseerd bouwproductiesysteem. Assemblagewerk op vier bouwomspannende die buiten het gebouw zijn geplaatst zodat het ontwerp van het gebouw niet al te veel beperkingen oplevert.

Links
AMURAD het Jackblok systeem van Kajima. Men begint aan de bovengrondse verdieping en bouwt (en ook af te bouwen) en gaat daarna vader met de onderliggende verdiepingen.
Innovative and Intelligent Field Factory IF7

The current building product systems have a number of advantages. The most important advantage is the ease of handling and the reduction of costs for large-scale projects. This is particularly true of the Japanese building systems, which have been developed through years of research and development. The new systems aim to make buildings easier to handle and reduce costs.

The new systems include: autonomous building systems, robot systems, and building management systems. These systems aim to reduce the number of workers needed and to improve the efficiency of construction. The IF7 project is an example of such a system.

IF7 is a world-wide project involving different countries and companies. The project involves the development of new building systems and the integration of existing systems.

IF7 is based on the use of robotic systems and autonomous systems. The project aims to reduce the number of workers needed and to improve the efficiency of construction. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The IF7 project is based on the use of robotic systems and autonomous systems. The project aims to reduce the number of workers needed and to improve the efficiency of construction. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The IF7 project is based on the use of robotic systems and autonomous systems. The project aims to reduce the number of workers needed and to improve the efficiency of construction. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.

The project involves the development of new building systems and the integration of existing systems. The project is being developed in several countries and regions, including Japan, Europe, and the United States.
REALITY' technieken waarbij werkvoorbereiding, planning en prestatieregistratie in -, in - en - geïntegreerd.

- Een onderzoek naar een transparante bouwplaatsfabriek, waarbij gedetailleerde informatie, pre-actieve adviezen en richtlijnen in real-time op alle werkplekken beschikbaar zijn voor de procesontwerpers en bouwkundigen, om mee te denken en om beslissingen te nemen.

- Een onderzoek naar het inzetten van 'cyber-agents' met het doel veiligheidsmaatregelen, kennis, hulpmiddelen en informatiebronnen op de hele wereld te beheren. Cyber-agents zijn softwareprogrammas die zelfstandig op zoek gaan naar informatie in het wereldwijde web van databases.

In bijstand schema zijn de 'Virtual-field Factory', 'VR-Coms' en 'Real-field Factory' in samenhang weergegeven. VR-Coms is een variant van 'Cyber Construction Management' (CCM), ontwikkeld om problemen te ontdekken en op te lossen. Het systeem beschikt over informatie die elektronisch op verschillende werkplekken toegankelijk is voor projectmanagers, uitvoerders, voorzieningen en arbeiders. Continu worden voorstellen bedacht en geëvalueerd tot een optimaal productieproces tot stand komt.

Ontwikkelingen in Nederland

Een systeenschema van het Virtual Reality Computer Management systeem VR-Coms. Een van de doelstellingen van de intelligent Field Factory IF7 onderzoeks-project.

De bouwplaats van Tekkel bouwconstructiesysteem. Een bouwplaatsfabriek waar automatisch zeer grote en zware bouwdeel worden geassembleerd, het transport ervan naar het gebouw en het inhuren.
Computerondersteund management systeem bij bouwdeelstroom vanaf fabriek tot en met aanwezigheid

aantal zaken anders om dan wij. Het nemen van individuele verantwoordelijkheid en het improviseren bij problemen zijn vaardigheden die bij ons een andere waarde hebben.

Literatuur

ARIB Bouwvisie 2015, editie 1998
Van Gassel, Frans, 1999, Mechanisatie op de bouwplaats,
collegedictaat Technische Universiteit Eindhoven.
Janssen, Jan, 1992, Projectencollege "Delfse Poort" Rotterdam,
collegedictaat Technische Universiteit Eindhoven.
Nishigaki, Shigcom, Learning and discovering problem solving solutions in construction sites.

De aansluiting van de grote bouwdeel vindt plaats met behulp van een speciaal hulpvoerderij.